Pada saat ini www.matjitu.com akan membahas contoh soal eksponen dan logaritma UTBK 2019. Pertanyaan ini berasal dari salah satu siswa kelas XII SMA.

Diketahui $4^x+5^y=6$ dan $4^{x/y}=5$, maka nilai $\frac{1}{x}+\frac{1}{y}$ adalah ....

Pembahasan :
Diketahui $4^x+5^y=6$ ......$(1)$
Substitusikan $4^{x/y}=5$ ke $(1)$ diperoleh
\begin{align*}
4^x+5^y&=6\\
4^x+(4^{x/y})^y&=6\\
4^x+4^x&=6\\
4^x&=3\\
x&=^4\log 3.
\end{align*}
Selanjutnya $4^{x/y}=5\Leftrightarrow 4=5^{y/x}$, substitusikan ke $(1)$ diperoleh
 \begin{align*}
4^x+5^y&=6\\
(5^{y/x})^x+5^y&=6\\
5^y+5^y&=6\\
5^y&=3\\
y&=^5\log 3.
\end{align*}
Jadi
\begin{align*}
\frac{1}{x}+\frac{1}{y}&=\frac{1}{^4\log 3}+\frac{1}{^5\log 3}\\
&=^3\log 4 +^3\log 5\\
&=^3\log 20.
\end{align*}